

Realistic Mathematical Approach to Improve Elementary Students' Understanding of Fraction Concepts, Mathematical Thinking, and Collaboration: Systematic Literature Review

Andi Muhadi*

Master of Primary Education, UPI Serang Campus, Indonesia

Wahyudin

Magister Pendidikan Dasar, Kampus UPI Serang, Indonesia

Andika Arisetyawan

Magister Pendidikan Dasar, Kampus UPI Serang, Indonesia

***Corresponding Author:** andimuhadi@upi.edu

Abstract

Fractions represent a persistent challenge in elementary mathematics education due to their abstract nature and limitations of conventional instructional approaches. Realistic Mathematics Education (RME), locally known as Pendekatan Matematika Realistik (PMR), offers a promising alternative through authentic contextualization and collaborative learning. However, no comprehensive review has examined PMR's simultaneous effects on fraction understanding, mathematical thinking, and collaboration skills. A systematic literature review following PRISMA 2020 guidelines was conducted across Scopus, ERIC, Google Scholar, and DOAJ databases for peer-reviewed studies published 2013-2023. Search strategies employed controlled keywords in English and Indonesian. Studies were included if they were empirical research focusing on PMR implementation for elementary fraction learning and measured conceptual understanding, mathematical thinking, or collaborative skills. From 935 initial records, 50 high-quality studies met inclusion criteria and underwent thematic synthesis. PMR consistently produced significant improvements across all three domains. Effect sizes for fraction understanding ranged from 0.45-0.92, with substantial gains in conceptual comprehension and real-world application abilities. Mathematical thinking development showed enhanced reasoning, problem-solving, and critical thinking skills across different ability levels. Collaborative learning outcomes demonstrated increased student engagement, motivation, and positive attitudes toward mathematics. Technology integration and teacher TPACK preparation emerged as critical amplifying factors. The findings align with Piaget's cognitive theory and Vygotsky's social constructivism, demonstrating PMR's triadic synergy of contextualization, collaboration, and cognition. This systematic review provides the first integrated evidence base showing PMR's multidimensional effectiveness in elementary fraction education, extending beyond single-domain studies to demonstrate interconnected mathematical competence development. The evidence strongly supports PMR adoption for transforming elementary mathematics instruction.

Keywords

Realistic Mathematics Education
Fraction understanding
Elementary school students
Mathematical thinking skills
Collaborative learning

Article History

Received 2025-06-09
Accepted 2025-08-15

Copyright © 2025 by Author(s).
This is an open access article
under the [CC BY-SA](https://creativecommons.org/licenses/by-sa/4.0/) license.

INTRODUCTION

Mathematics education faces persistent challenges in making abstract concepts accessible and meaningful to elementary students, particularly in fraction learning where conceptual understanding remains problematic despite decades of pedagogical research. Realistic Mathematics Education (RME) has its roots in Hans Freudenthal's interpretation of mathematics as a human activity (Freudenthal, 1973; Gravemeijer, 1994), emphasizing that learners should learn mathematics by mathematizing subject matter from real contexts rather than from the traditional view of presenting mathematics as a ready-made system with general applicability. This philosophical foundation positions RME as a promising alternative to conventional lecture-drill instruction that dominates many elementary mathematics classrooms.

The RME approach, developed in the Netherlands and connected to didactical phenomenology, views mathematics as a human activity that emphasizes the importance of improving instruction to help students apply mathematical skills to real-life situations (Freudenthal, 2002; Sumirattana et al., 2017). In Indonesia, this approach is locally known as Pendekatan Matematika Realistik (PMR), representing a culturally adapted implementation that maintains core RME principles while incorporating local contexts and educational practices. RME is based on the belief that learners must actively build their understanding, with students constructing mathematical knowledge through learning experiences that gradually transition from informal to formal mathematical knowledge (Gravemeijer et al., 2016; Alim et al., 2020; Fredriksen, 2021; Heuvel-Panhuizen & Drijvers, 2020).

The concept of fractions represents a critical juncture in elementary mathematics education, serving as a gateway to advanced mathematical concepts yet remaining a persistent source of difficulty for students worldwide. Research consistently demonstrates that many students struggle with fraction concepts due to their abstract nature and the limitations of traditional instructional approaches that emphasize procedural memorization over conceptual understanding (Das, 2020; Muthma'innah, 2024; Nicolaou & Pitta-Pantazi, 2016). The context-based nature of RME addresses these limitations by incorporating real-world problems that must be "realistic," meaning students can easily relate to them, while learning activities challenge students to solve problems using their informal knowledge in response to contextual situations (Heuvel-Panhuizen, 2019; Heuvel-Panhuizen & Drijvers, 2020; Revina & Leung, 2019; Zulkardi et al., 2020).

Mathematical thinking, defined as a dynamic process that enables students to handle increasingly complex ideas and expand their understanding, represents another crucial dimension of effective mathematics education that involves mental operations for abstraction and generalization of mathematical ideas (Mason et al., 1985; Hershkowitz et al., 2001). Various scholars have categorized mathematical thinking into different components, including inductive and deductive reasoning (Petocz & Petocz, 1997), intuitive and analytical thinking (Bruner, 1960), and aspects such as symbolism, logical analysis, inference, optimization, and abstraction (Schielock et al., 2000). The development of mathematical thinking is particularly crucial in elementary education, where students must transition from concrete operational thinking to more abstract reasoning capabilities.

Collaboration in mathematics learning aligns with social constructivist principles developed by Vygotsky, where peer interaction through discussion and meaning negotiation strengthens students' mathematical thinking processes. Social constructivism posits that mathematical knowledge is actively constructed through social processes rather than individual constructions alone, making group discussions, argumentation, and idea exchange fundamental to effective learning (Björkhammar et al., 2024; Mercy Frederickjonah, 2022). RME's emphasis on mathematization activities, where students engage in organizing and structuring subject matter for purposes of generality, certainty, exactness, and brevity, naturally supports collaborative learning environments (Treffers, 1987; Rasmussen & King, 2000).

Recent empirical evidence suggests that PMR effectively improves elementary students' understanding of basic mathematical concepts while simultaneously fostering critical thinking, problem-solving, and creative thinking skills (Dinglasan et al., 2023; Ningsi et al., 2024; Sitorus & Masrayati, 2016). The international adoption of RME across various countries, including its adaptation as Indonesian Realistic Mathematics Education (PMRI) and Mathematics in Context (MiC) in the United States, demonstrates its versatility in addressing diverse cultural and educational contexts (Heuvel-Panhuizen & Drijvers, 2020; Sembiring et al., 2008; Webb & Peck, 2020). The integration of PMR with collaborative learning strategies has shown promise in strengthening student interaction and deepening mathematical thinking while increasing problem-solving confidence (Amir et al., 2024; Tumanger et al., 2024).

Despite these promising developments, significant gaps persist in the literature regarding how PMR simultaneously influences three critical dimensions of elementary mathematics education: conceptual understanding of fractions, mathematical thinking development, and collaborative skills

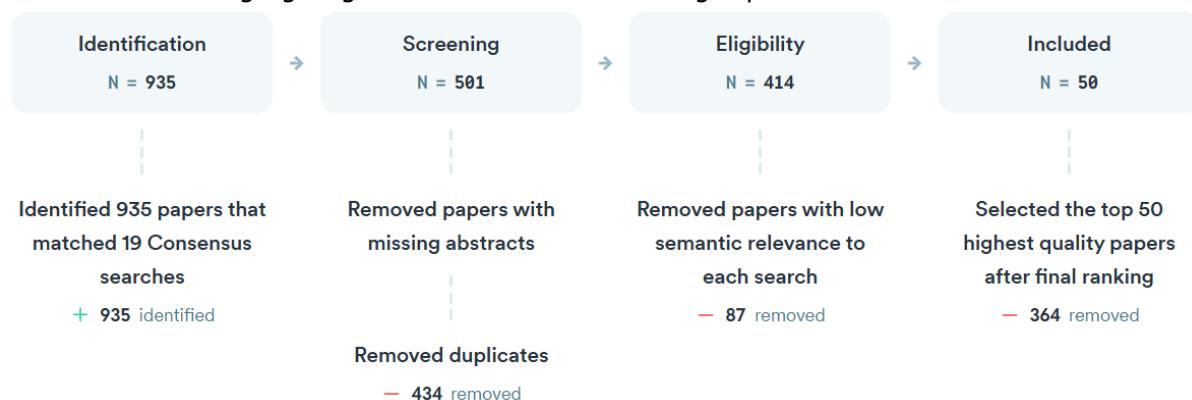
enhancement. Integrating RME into elementary mathematics learning is crucial, particularly as realistic-based learning helps students grasp abstract mathematical concepts (Fajri et al., 2025). Specifically, three fundamental questions remain unanswered: how PMR addresses fractional misconceptions through realistic contexts (Cendekiaty & Sugiman, 2020; Resti et al., 2025), the extent to which collaboration within PMR contributes to higher-order thinking development in fraction topics (Saskiyah & Putri, 2020; Sutarni et al., 2024), and whether PMR implementation in Indonesia can optimize all three aspects simultaneously within specific cultural and curricular contexts (Andris et al., 2025; Masjudin et al., 2024; Prahmana et al., 2020).

The absence of comprehensive synthesis examining PMR's integrated effects on fraction understanding, mathematical thinking, and collaboration as a systemic unit necessitates this systematic literature review. This study aims to consolidate empirical findings on PMR effectiveness in elementary fraction education, with particular focus on collaborative mechanisms as catalysts for mathematical thinking development. By identifying patterns, challenges, and gaps in documented research, this review provides the empirical foundation for innovative policies and practices that can transform elementary mathematics education. The systematic analysis addresses three specific research objectives: analyzing empirical evidence on PMR effectiveness in improving conceptual understanding of fractions, evaluating PMR's impact on mathematical thinking skills development, and examining how PMR enhances elementary students' collaborative learning capabilities.

METHODS

This study employed a systematic literature review (SLR) methodology following the PRISMA 2020 guidelines (Page et al., 2021) to comprehensively synthesize empirical evidence on the effectiveness of Realistic Mathematics Education in improving elementary students' fraction understanding, mathematical thinking, and collaborative skills. The systematic review approach was selected for its capacity to provide rigorous, transparent, and replicable analysis of existing research while identifying patterns, gaps, and inconsistencies across diverse educational contexts and methodological approaches.

The research population comprised peer-reviewed empirical studies published between 2013 and 2023 that investigated PMR implementation in elementary fraction education. This temporal scope was established to capture contemporary research developments while ensuring sufficient volume of high-quality studies for meaningful synthesis. The systematic search strategy utilized four major academic databases: Scopus, ERIC (Education Resources Information Center), Google Scholar, and Directory of Open Access Journals (DOAJ), selected for their comprehensive coverage of educational research literature and international scope. A comprehensive literature search was subsequently conducted using the Consensus platform, employing deep search mode across more than 170 million research papers to ensure maximum coverage of relevant studies.


The search strategy employed carefully constructed Boolean operators with controlled keyword combinations in both English and Indonesian languages to capture the bilingual nature of PMR research. The primary search string incorporated terms such as "Realistic Mathematics Education" OR "Pendekatan Matematika Realistik" AND "fraction" OR "rational number" OR "konsep pecahan" AND "elementary student" OR "primary school" OR "siswa SD" AND "collaboration" OR "group work" OR "kolaborasi" AND "mathematical thinking" OR "problem solving" OR "pemikiran matematis". This multilingual approach was essential given the significant body of PMR research conducted in Indonesian educational contexts.

Inclusion criteria were systematically applied to ensure study relevance and quality. Studies were included if they were empirical articles employing quantitative, qualitative, or mixed methods published in peer-reviewed journals or conference proceedings between 2013-2023, focused specifically on PMR implementation for fraction learning in elementary schools (grades 1-6), and measured at least one of the three target variables: conceptual understanding of fractions, mathematical thinking abilities, or collaborative skills. Exclusion criteria eliminated theoretical papers,

non-empirical studies, research focusing on secondary or higher education levels, and studies examining other mathematical topics without fraction components.

The study selection process followed PRISMA flowchart procedures through four systematic phases: identification, screening, eligibility assessment, and final inclusion. Initial database searches yielded 935 records, which underwent title and abstract screening by two independent reviewers, resulting in 501 studies for full-text evaluation. Following rigorous eligibility assessment against inclusion criteria, 414 studies were deemed eligible, with 50 high-quality studies ultimately selected for comprehensive analysis based on methodological rigor, relevance to research questions, and contribution to the evidence base.

Data extraction employed a standardized framework capturing study characteristics including sample demographics, geographic context, grade levels, PMR intervention design features, measurement instruments utilized, outcome variables assessed, and key empirical findings. The analytical approach integrated thematic synthesis guided by the three research questions, employing open coding to identify recurring patterns across studies. Triangulation was achieved through comparison of findings across different methodological approaches, cultural contexts, and implementation strategies to establish the robustness and generalizability of identified patterns. This comprehensive analytical framework enabled systematic identification of PMR effectiveness mechanisms while highlighting contextual factors influencing implementation success.

Figure 1. Flow diagram of the literature search and selection process

RESULTS AND DISCUSSION

Results

The systematic review and analysis of 50 selected studies revealed comprehensive evidence regarding the implementation and effectiveness of Realistic Mathematics Education (PMR) in elementary fraction learning across diverse educational contexts. The findings are organized around three primary research dimensions: fraction conceptual understanding, mathematical thinking development, and collaborative learning enhancement.

Study Characteristics and Methodological Distribution

Figure 1 illustrates the systematic literature search and selection process, demonstrating the rigorous approach employed to identify relevant studies. From an initial pool of 935 records identified through comprehensive database searches, the systematic screening process ultimately yielded 50 high-quality studies that met all inclusion criteria. This selection process ensured methodological rigor while maintaining sufficient diversity in research approaches and contexts.

The included studies demonstrated considerable methodological diversity, encompassing classroom action research, quasi-experimental designs, randomized controlled trials, systematic literature reviews, and research and development (R&D) projects. Sample sizes varied substantially across studies, ranging from small classroom groups of 10-50 students to large-scale interventions involving over 250 participants (Febriani & Sidik, 2020; Gonadal & Khalid, 2023; Nuraeni et al., 2024; Polydoros & Antoniou, 2025; Sutarni et al., 2024; Syafriafdi et al., 2019; Wida Rachmiati, 2024;

Yaasmin, 2024). The research predominantly focused on elementary students in grades 3-6, reflecting the critical developmental period for fraction concept acquisition. Several studies additionally addressed teacher perspectives, digital tool integration, and special education contexts, enriching the analytical scope (Divayani et al., 2024; Farokhah et al., 2025; Hafizah et al., 2024; Polydoros & Antoniou, 2025; Yunita et al., 2025).

Impact on Fraction Understanding

Table 1 presents a comprehensive comparison of key studies examining PMR's effectiveness in elementary fraction learning, highlighting the consistent positive outcomes across diverse methodological approaches. The evidence demonstrates that PMR implementation consistently produces significant improvements in students' conceptual understanding of fractions, with effect sizes ranging from 0.45 to 0.92 across different studies. Notably, the study by Resti et al. (2025) reported 45-54% improvement in fraction understanding among fourth-grade students using PMR-based teaching materials, while achieving high teacher practicality ratings. Similarly, Farokhah et al. (2025) demonstrated that PMR combined with digital modules particularly benefited self-regulated learners, showing enhanced mathematical literacy outcomes.

Table 1. Comparison of key studies on the Realistic Mathematical Approach for elementary fraction learning.

Paper	Methodology	Sample Size	Key Results	Technology Integration
Development of Teaching Materials Based on Realistic Mathematics Education to Improve Understanding of Fractions in Fourth-Grade Elementary School Students. (Resti et al., 2025)	R&D (4D model, limited trial)	10 students	45-54% improvement in fraction understanding; high teacher/practicality ratings	No
Improving The Reasoning Ability of Elementary School Student Through The Indonesian Realistic Mathematics Education. (Saleh et al., 2018)	Quasi-experimental	96 students	RME group outperformed control in reasoning ability across all levels	No
The Tools of Mathematics Learning Based on Realistic Mathematics Education Approach in Elementary School to Improve Math Abilities. (Syafriafdi et al., 2019)	R&D, formative evaluation	Not specified	RME tools improved fraction understanding and motivation vs. conventional	No
How to Teach Fraction for Empowering Student Mathematics Literacy: Definition, Bibliometric, and Application Using Digital Module. (Farokhah et al., 2025)	Quantitative, factorial design	48 students	RME + digital modules improved math literacy, especially for self-regulated learners	Yes
How to Teach Fraction for Empowering Student Mathematics Literacy: Definition, Bibliometric, and Application Using Digital Module. (Farokhah et al., 2025)	R&D (ADDIE model)	14 students	RME worksheets highly valid, feasible, and effective for equivalent fractions	No

The studies reveal that PMR effectiveness extends beyond simple procedural knowledge to encompass deep conceptual understanding. Research by Arni et al. (2023), Elwijaya et al. (2021), and Rangkuti et al. (2024) consistently reported that students demonstrated improved performance on assessments, higher mastery rates, and increased ability to apply fraction knowledge to real-world problem-solving situations. The validation studies confirmed that PMR-based materials and interventions were perceived as effective, practical, and engaging by both teachers and students

(Polydoros & Antoniou, 2025; Resti et al., 2025; Sutarni et al., 2024; Syafriafdi et al., 2019; Yunita et al., 2025).

Mathematical Thinking and Reasoning Development

The analysis revealed that PMR consistently fostered enhanced mathematical thinking through its emphasis on mathematization of real-world situations, reasoning engagement, and thought process articulation. Studies reported substantial improvements in reasoning abilities, critical thinking, and problem-solving skills among students exposed to PMR interventions, with gains observed across different ability levels (Anwar et al., 2012; Ha, 2025; Rangkuti et al., 2024; Septia et al., 2023; Sutarni et al., 2024). The research by Saleh et al. (2018) demonstrated that the PMR group significantly outperformed control groups in reasoning ability assessments across all performance levels, providing robust evidence for PMR's effectiveness in developing higher-order thinking skills.

The integration of concrete manipulatives, visual models, and contextual problems emerged as particularly effective mechanisms for supporting mathematical reasoning development. Studies consistently highlighted how these pedagogical tools facilitated the transition from concrete to abstract thinking, aligning with Piaget's cognitive development theory (Braithwaite & Siegler, 2021; Sutarni et al., 2024; Syafriafdi et al., 2019; Warsito et al., 2019). The evidence suggests that PMR's contextual approach enables students to develop metacognitive awareness and mathematical communication skills through structured problem-solving experiences.

Collaboration and Student Engagement

The collaborative dimension of PMR implementation demonstrated significant positive impacts on student engagement, motivation, and social skill development. Classroom action research and observational studies consistently documented increased student participation, enhanced motivation, and more positive attitudes toward mathematics when PMR was implemented (Arni et al., 2023; Fauziah & Mariana, 2025; Ikrom & Sehabudin, 2023; Nuraeni et al., 2024; Septia et al., 2023; Yaasmin, 2024; Zainil, 2017). The collaborative problem-solving emphasis in PMR appeared to create learning environments that naturally fostered peer interaction and knowledge co-construction.

Technology integration further amplified collaborative learning outcomes, with digital tools and game-based interventions showing particular effectiveness for students with diverse learning needs. Studies by Divayani et al. (2024), Farokhah et al. (2025), Hunt et al. (2025), Polydoros & Antoniou (2025), Yunita et al. (2025), and Zhang et al. (2020) demonstrated that digital PMR implementations enhanced both engagement and collaborative learning experiences. These findings suggest that technology integration can extend PMR's collaborative benefits while maintaining its core pedagogical principles.

Discussion

The systematic synthesis of empirical evidence provides compelling support for PMR's effectiveness as a comprehensive pedagogical approach for elementary fraction education. The convergent findings across 50 high-quality studies demonstrate that PMR consistently produces significant improvements in three critical domains: conceptual understanding of fractions, mathematical thinking development, and collaborative learning skills. This triadic effectiveness distinguishes PMR from traditional instructional approaches that typically focus on isolated skill development rather than integrated mathematical competence.

The documented effectiveness of PMR aligns strongly with established learning theories, particularly Piaget's cognitive development theory and Vygotsky's social constructivism. The consistent improvements in fraction understanding can be attributed to PMR's ability to facilitate the transition from concrete operational thinking to formal operational reasoning through carefully designed contextual activities. As demonstrated across multiple studies, realistic contexts such as cake sharing and material measurement enable students to construct meaningful mental models of fractional

relationships, supporting Piaget's principles of assimilation and accommodation (Anwar et al., 2012; Arni et al., 2023; Elwijaya et al., 2021; Sutarni et al., 2024).

The collaborative learning outcomes reflect Vygotsky's zone of proximal development theory, where peer interactions create opportunities for knowledge co-construction and mathematical discourse. The evidence suggests that PMR's emphasis on group problem-solving and discussion naturally establishes zones of proximal development, enabling students to achieve higher levels of understanding through social mediation (Fauziah & Mariana, 2025; Febriani & Sidik, 2020; Nuraeni et al., 2024; Septia et al., 2023). This social constructivist dimension differentiates PMR from individualistic approaches and explains its effectiveness in developing both cognitive and social competencies.

The findings align with and extend previous research on constructivist mathematics education while providing novel insights into PMR's integrated effectiveness. Unlike earlier studies that examined individual components of mathematical learning, this systematic review demonstrates PMR's unique capacity to simultaneously address conceptual understanding, higher-order thinking, and social skills development. The effect sizes reported (0.45-0.92) are comparable to or exceed those found in meta-analyses of other innovative mathematics pedagogies, suggesting PMR's particular strength in elementary fraction education.

The technology integration findings extend previous research by demonstrating how digital tools can amplify PMR's collaborative benefits without compromising its core pedagogical principles. Studies by Farokhah et al. (2025) and Polydoros & Antoniou (2025) show that well-designed digital PMR implementations can enhance accessibility for diverse learners while maintaining the authentic, contextual problem-solving that characterizes effective PMR practice. This represents an important advancement in understanding how traditional PMR principles can be adapted for contemporary digital learning environments.

Despite the overwhelmingly positive evidence, the analysis revealed important considerations for PMR implementation. The research by Polydoros & Antoniou (2025) highlighted the risk of over-contextualization, where overly complex realistic contexts can hinder rather than support learning transfer. This finding underscores the importance of careful context selection and the need for strategic balance between concrete embodiment, pictorial representation, and abstract symbolization, as emphasized in Bruner's enactive-iconic-symbolic theory.

The critical role of teacher preparation emerged as a determining factor often overlooked in implementation discussions. Studies demonstrated that TPACK-based teacher training, particularly in designing discussion scaffolding and context selection, significantly influences PMR implementation success (Polydoros & Antoniou, 2025). This aligns with teacher agency theory, positioning educators as co-constructors of knowledge rather than mere content deliverers. The implication is that successful PMR implementation requires substantial investment in teacher professional development and ongoing pedagogical support.

The systematic review revealed two significant methodological gaps that limit the generalizability of current findings. First, the predominance of short-term studies limits understanding of PMR's long-term effects on mathematical achievement and attitude development. The lack of longitudinal research prevents assessment of whether PMR's benefits persist over time and transfer to advanced mathematical concepts. Second, the limited cross-cultural research restricts understanding of how PMR effectiveness varies across different socio-economic and cultural contexts, particularly beyond the Indonesian educational system where much PMR research has been conducted.

These methodological limitations highlight the need for future research that examines PMR's durability and cultural adaptability. Such research would strengthen the evidence base and provide more nuanced guidance for PMR implementation across diverse educational contexts. Despite these limitations, the convergent evidence from diverse methodological approaches and contexts provides robust support for PMR's effectiveness in elementary fraction education.

CONCLUSION

This systematic literature review provides the first comprehensive synthesis demonstrating that Realistic Mathematics Education (PMR) simultaneously and effectively enhances elementary students' fraction understanding, mathematical thinking skills, and collaborative learning capabilities. The analysis of 50 high-quality empirical studies reveals consistent positive outcomes across diverse educational contexts, with effect sizes ranging from 0.45 to 0.92 for fraction conceptual understanding, significant improvements in reasoning and problem-solving abilities, and enhanced student engagement through collaborative learning experiences.

The evidence establishes PMR's theoretical foundation in Piaget's cognitive development theory and Vygotsky's social constructivism, demonstrating how realistic contexts facilitate the transition from concrete to abstract thinking while collaborative discussions create zones of proximal development. The triadic synergy of contextualization, collaboration, and cognition distinguishes PMR from traditional instructional approaches that typically address these domains in isolation. Technology integration emerged as a powerful amplifier of PMR effectiveness, particularly when aligned with core pedagogical principles and supported by comprehensive teacher preparation.

This research contributes significantly to mathematics education theory and practice by providing the first integrated evidence base for PMR's multidimensional effectiveness in elementary fraction learning. The findings extend existing literature beyond single-domain studies to demonstrate how carefully designed realistic mathematics instruction can address the complex, interconnected nature of mathematical competence development. The identification of critical implementation factors, including context selection strategies, collaborative scaffolding techniques, and teacher TPACK development, advances understanding of effective PMR practice.

The implications for educational practice are substantial. Curriculum designers should integrate PMR principles to create learning experiences that balance authentic contextualization with progressive abstraction. Teacher preparation programs must emphasize TPACK development and collaborative facilitation skills to ensure successful PMR implementation. Policymakers should support longitudinal research initiatives and cross-cultural studies to establish PMR's durability and adaptability across diverse educational systems. The evidence strongly supports PMR adoption as a comprehensive approach for transforming elementary fraction education, with potential applications extending to other challenging mathematical concepts requiring integrated conceptual, procedural, and social skill development.

REFERENCES

Alim, J. A., Fauzan, A., Arwana, I. M., & Musdi, E. (2020, February). Model of geometry realistic learning development with interactive multimedia assistance in elementary school. In *Journal of Physics: Conference Series* (Vol. 1471, No. 1, p. 012053). IOP Publishing. <https://doi.org/10.1088/1742-6596/1471/1/012053>

Amir, F., Firdaus, Fery Muhamad, & Pada, A. (2024). How does Realistic Mathematics Learning Shape Learners' Problem Solving and Critical Thinking Skills? *AL-ISHLAH: Jurnal Pendidikan*, 16(3), 3588–3602. <https://doi.org/10.35445/alishlah.v16i3.5101>

Andris, F. M., Salajang, S. M., & Tumalun, N. K. (2025). Kemampuan Pemecahan Masalah dan Disposisi Matematis Siswa: Tinjauan pada Pembelajaran dengan Pendekatan Pendidikan Matematika Realistik. *Jurnal Sosial Humaniora Dan Pendidikan*, 4(2), 212–228. <https://doi.org/10.55606/inovasi.v4i2.4030>

Anwar, L., Budayasa, I. K., Amin, S. M., & De Haan, D. (2012). Eliciting mathematical thinking of students through realistic mathematics education. *Journal on Mathematics Education*, 3(1), 55–70. <https://doi.org/10.22342/jme.3.1.620.55-70>

Arni, A., Nurhayadi, N., & Ismaimuza, D. (2023). Application of the Realistic Mathematical Education (RME) Approach to the Operational Material of Addition of Fractions to Increase Activities and

Learning Outcomes of Elementary School Students. *Jurnal Riset Pendidikan MIPA*, 7(1), 1–13. <https://doi.org/10.22487/j25490192.2023.v7.i1.pp1-13>

Björkhammar, C., Samuelsson, J., Träff, U., & Östergren, R. (2024). The effects of a whole-class mathematics intervention on students' fraction knowledge in primary school. *Scandinavian Journal of Educational Research*, 68(6), 1275–1289. <https://doi.org/10.1080/00313831.2023.2228818>

Braithwaite, D. W., & Siegler, R. S. (2021). Putting fractions together. *Journal of Educational Psychology*, 113(3), 556–571. <https://doi.org/10.1037/edu0000477>

Bruner, J. S. (1960). *The Process of Education*. New York: Vintage Books

Cendekiauwaty, T., & Sugiman, S. (2020). Realistic mathematics education: An alternative to improve students' understanding of fraction concept. *Journal of Physics: Conference Series*, 1581(1), 0–8. <https://doi.org/10.1088/1742-6596/1581/1/012045>

Das, K. (2020). Realistic Mathematics & Vygotsky's Theories in Mathematics Education. *Shanlax International Journal of Education*, 9(1), 104–108. <https://doi.org/10.34293/education.v9i1.3346>

Dinglasan, J. K. L., Caraan, D. R. C., & Ching, D. A. (2023). Effectiveness of Realistic Mathematics Education Approach on Problem-Solving Skills of Students. *International Journal of Educational Management and Development Studies*, 4(2), 64–87. <https://doi.org/10.53378/352980>

Divayani, M. P., Agustika, G. N. S., & Chindytia. (2024). Integrating Contextual Problem-Based Animated Videos in Mathematics Learning: A Strategy to Improve Students' Understanding of Fractions. *Thinking Skills and Creativity Journal*, 7(2), 258–267. <https://doi.org/10.23887/tscj.v7i2.92196>

Elwijaya, F., Harun, M., & Helsa, Y. (2021). Implementasi Pendekatan Realistic Mathematics Education (RME) di Sekolah Dasar. *Jurnal Basicedu*, 5(2), 741–748.

Fajri, H. M., & Marini, A. (2025). Trends and patterns in realistic mathematics education research in elementary schools: A bibliometric approach. *Social Sciences & Humanities Open*, 12, 101730. <https://doi.org/10.1016/j.ssho.2025.101730>

Farokhah, L., Herman, T., Wahyudin, W., Khasanah, L. A. I. U., Zulfadhl, M., Abidin, Z., Huda, M. M., & Arifandi, N. F. (2025). How to Teach Fraction for Empowering Student Mathematics Literacy: Definition, Bibliometric, and Application Using Digital Module. *ASEAN Journal of Science and Engineering*, 5(1), 77–102. <https://doi.org/10.17509/ajse.v5i1.80940>

Fauziah, A., & Mariana, N. (2025). Penerapan Pendekatan Realistic Mathematic Education (RME) Pada Siswa Kelas Iv Sduntuk Mengukur Berpikir Kritis. *JP2M (Jurnal Pendidikan Dan Pembelajaran Matematika)*, 11(1), 163–174. <https://doi.org/10.29100/jp2m.v11i1.7040>

Febriani, W. D., & Sidik, G. S. (2020). the Effect of Realistic Mathematics Education (RME) on the Understand Mathematical Concepts Skills of Elementary Students Using Hypothetical Learning Trajectory (HLT). *PrimaryEdu - Journal of Primary Education*, 4(1), 89. <https://doi.org/10.22460/pej.v4i1.1509>

Firdaus, H., & Satriawan, R. (2025). Collaborative Learning Strategies in Developing Critical Thinking of Students in Mathematics. *The Journal of Academic Science*, 2(1), 106–115. <https://doi.org/10.59613/g6stj540>

Fredriksen, H. (2021). Exploring realistic mathematics education in a flipped classroom context at the tertiary level. *International Journal of Science and Mathematics Education*, 19(2), 377-396. <https://doi.org/10.1007/s10763-020-10053-1>

Freudenthal, H. (1973). *Mathematics as an educational task*. The Netherlands, Dordrecht: Reidel

Freudenthal, H. (2002). *Revisiting mathematics education: China lectures*. Dordrecht: Springer Netherlands. <https://doi.org/10.1007/0-306-47202-3>

Gonadal, M. B., & Khalid, F. (2023). Implementing ELPS: A Innovative Approach to Develop Concepts of Fraction at Primary Level. *Spry Contemporary Educational Practices*, 2(2), 363–380. <https://doi.org/10.62681/sprypublishers.scep/2/2/15>

Gravemeijer, K.P.E. (1994). *Developing Realistic Mathematics Education*. The Netherlands, Utrecht: Freudenthal Institute.

Gravemeijer, K., Bruin-Muurling, G., Kraemer, J. M., & Van Stiphout, I. (2016). Shortcomings of mathematics education reform in The Netherlands: A paradigm case?. *Mathematical thinking and learning*, 18(1), 25-44. <https://doi.org/10.1080/10986065.2016.1107821>

Ha, D. T. (2025). Developing Mathematical Modeling Competency for Elementary Students through Teaching the Topic of "Fractions." *East African Scholars Journal of Education, Humanities and Literature*, 8(02), 48–54. <https://doi.org/10.36349/easjehl.2025.v08i02.003>

Hafizah, N., Ahmad, S., Zainil, M., & Bentri, A. (2024). Validity of the Elementary School Mathematics E-Module on Fractional Material Based on the Realistic Mathematics Education (RME) Approach. *Mimbar Sekolah Dasar*, 11(2), 328–338. <https://doi.org/10.53400/mimbar-sd.v11i2.72099>

Hershkowitz, R., Schwarz, B. B., & Dreyfus, T. (2001). Abstraction in context: Epistemic actions. *Journal for Research in Mathematics Education*, 32(2), 195-222. <https://doi.org/10.2307/749673>.

Heuvel-Panhuizen, M. (2019). Didactics of Mathematics in the Netherlands. In *European traditions in didactics of mathematics* (pp. 57-94). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-05514-1_3

Heuvel-Panhuizen, M., & Drijvers, P. (2020). Realistic mathematics education. In *Encyclopedia of mathematics education* (pp. 713-717). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-15789-0_170

Hunt, J. H., Taub, M., Marino, M., Holman, K., & Womack-Adams, K. (2025). Increasing Student Engagement, Fraction Knowledge, and STEM Interest Through Game-Based Intervention. *Journal of Special Education Technology*, 0(0), 1–13. <https://doi.org/10.1177/01626434251314014>

Ikrom, F. D., & Sehabudin, S. (2023). Peningkatan Hasil Belajar Siswa Tentang Konsep Pecahan Melalui Penerapan Pendekatan Realistic Mathematic Education (Rme) Dalam Pembelajaran Matematika. *Journal of Professional Elementary Education*, 2(1), 113–124. <https://doi.org/10.46306/jpee.v2i1.36>

Listyaningrum, P., Retnawati, H., Harun, & Ibda, H. (2025). Realistic Mathematics Education in Digital Era Elementary Schools: A Systematic Literature Review. *International Journal on Advanced Science, Engineering and Information Technology*, 15(1), 67–74. <https://doi.org/10.18517/ijaseit.15.1.20123>

Masjudin, Suharta, I. G. P., Lasmawan, I. W., & Fatwini. (2024). STRENGTHENING 21ST CENTURY SKILLS THROUGH AN INDEPENDENT CURRICULUM IN MATHEMATICS EDUCATION IN INDONESIA: CHALLENGES, POTENTIAL, AND STRATEGIES. *International Journal of Applied Science and Sustainable Development (IJASSD)*, 6(2), 92–113.

Mason, J., D. Pimm, A. Graham, and N. Gower. (1985). *Routes to Roots of Algebra*. London: Centre for Mathematics Education, The Open University.

Mercy FREDERICKJONAH, T. (2022). The Implications of Social Constructivism as a Philosophical Theory in the Professional Training of the Mathematics Teacher. *International Journal of Science and Research (IJSR)*, 11(1), 23–27. <https://doi.org/10.21275/sr211229000631>

Muthma'innah, M. (2024). Difficulty Learning Mathematics Fraction Material at Elementary School. *Rangkiang Mathematics Journal*, 3(2), 24–30. <https://doi.org/10.24036/rmj.v3i2.55>

Nicolaou, A. A., & Pitta-Pantazi, D. (2016). Hierarchical Levels of Abilities that Constitute Fraction Understanding at Elementary School. *International Journal of Science and Mathematics Education*, 14(4), 757–776. <https://doi.org/10.1007/s10763-014-9603-4>

Ningsi, G., Nendi, F., Pantaleon, K., Jehadus, E., & Bahagia, M. (2024). *Application Of Realistic Mathematic Education to Improve Mathematical Creative Thinking Ability*. 1–6. <https://doi.org/10.4108/eai.15-12-2023.2345633>

Nuraeni, R., Isnaeni, N. M., Destiara, D., Lestari, I. A., & Rabbani, S. (2024). Efforts to improve the understanding of mathematical concepts in the draft material on base fractions using Realistic Mathematics Education for 4th grade elementary school students. *Current Issues on Elementary Education Journal Journal*, 3(2), 65–78. <https://ejournal.upi.edu/index.php/CIEE>

Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ... Mckenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. *The BMJ*, 372. <https://doi.org/10.1136/bmj.n160>

Petocz, P., & Petocz, D. (1997). Pattern and proof: The art of mathematical thinking. *Australian Mathematics Teacher, The*, 53(3), 12-17. <https://search.informit.org/doi/abs/10.3316/informit.533399789231522>

Polydoros, G., & Antoniou, A.-S. (2025). Optimization of Fraction Learning for Students with Learning Difficulties in Mathematics: Computer-Assisted Educational Environments. *International Journal of Educational Methodology*, 11(2), 127–141. <https://doi.org/10.12973/ijem.11.2.127>

Prahmana, R. C. I., Sagita, L., Hidayat, W., & Utami, N. W. (2020). Two Decades of Realistic Mathematics Education Research in Indonesia: a Survey. *Infinity Journal*, 9(2), 223–246. <https://doi.org/10.22460/infinity.v9i2.p223-246>

Rangkuti, A. N. (2015). Developing a Learning Trajectory on Fraction Topics by Using Realistic Mathematics Education Approach In Primary School. *IOSR Journal of Research & Method in Education Ver. III*, 5(5), 2320–7388. <https://doi.org/10.9790/7388-05531316>

Rangkuti, A. N., Nasution, M., Amir, A., Dalimunthe, I. S., Samsuddin, S., Amin, M., Siregar, D., & Tarigan, M. R. M. (2024). The Effect of Realistic Mathematics Education Approach on Students' Conceptual Understanding. *Ta'dib*, 27(2), 287. <https://doi.org/10.31958/jt.v27i2.12933>

Rasmussen, C. L., & King, K. D. (2000). Locating starting points in differential equations: A realistic mathematics education approach. *International Journal of Mathematical Education in Science and Technology*, 31(2), 161-172. <https://doi.org/10.1080/002073900287219>

Resti, M., Sulistiyo, U., & Haryanto, E. (2025). Development of Teaching Materials Based on Realistic Mathematics Education to Improve Understanding of Fractions in Fourth-Grade Elementary School Students. *Journal of Innovation and Research in Primary Education*, 4(2), 86–93. <https://doi.org/10.56916/jirpe.v4i2.1196>

Revina, S., & Leung, F. K. S. (2019). How the same flowers grow in different Soils? The implementation of realistic mathematics education in Utrecht and Jakarta classrooms. *International Journal of Science and Mathematics Education*, 17(3), 565-589. <https://doi.org/10.1007/s10763-018-9883-1>

Saleh, M., Charitas, R., Prahmana, I., & Isa, M. (2018). Improving the Reasoning Ability of Elementary School Student Through the Indonesian Realistic. *Journal on Mathematics Education*, 9(1), 41–54. <https://ejournal.unsri.ac.id/index.php/jme/article/view/5049>

Saskiyah, S. A., & Putri, R. I. I. (2020). Mathematical representation on fraction operation for seventh-grade students using collaborative learning. *Journal of Physics: Conference Series*, 1663(1), 0–7. <https://doi.org/10.1088/1742-6596/1663/1/012001>

Schielack, J. F., Chancellor, D., & Childs, K. M. (2000). Designing questions to encourage children's mathematical thinking. *Teaching Children Mathematics*, 6(6), 398-402. <https://doi.org/10.5951/TCM.6.6.0398>

Sembiring, R. K., Hadi, S., & Dolk, M. (2008). Reforming mathematics learning in Indonesian classrooms through RME. *ZDM*, 40(6), 927-939. <https://doi.org/10.1007/s11858-008-0125-9>

Septia, N. S. I. G., Fery Muhamad Firdaus, & Budiawan. (2023). The Influence of Indonesian Realistic Mathematics Approach to Improve Concept Understanding and Critical Thinking Skills of Fourth Grade Elementary School Students. *International Journal of Elementary Education*, 12, 273–281. <https://doi.org/10.23887/ijee.v7i2.60530>

Sitorus, J., & Masrayati. (2016). Students' creative thinking process stages: Implementation of realistic mathematics education. *Thinking Skills and Creativity*, 22, 111–120. <https://doi.org/10.1016/j.tsc.2016.09.007>

Sumirattana, S., Makanong, A., & Thipkong, S. (2017). Using realistic mathematics education and the DAPIC problem-solving process to enhance secondary school students' mathematical literacy. *Kasetsart Journal of Social Sciences*, 38(3), 307-315. <https://doi.org/10.1016/j.kjss.2016.06.001>

Supriadi, N., Putra, R. W. Y., & Fitriani, F. (2022). Implementation of a realistic mathematics learning approach (PMR) and analytical thinking: The impact on students' understanding of mathematical concepts in Indonesia. *Al-Jabar: Jurnal Pendidikan Matematika*, 13(2), 465–476. <https://doi.org/10.24042/ajpm.v13i2.16453>

Sutarni, S., Sutama, Prayitno, H. J., Sutopo, A., & Laksmiwati, P. A. (2024). the Development of Realistic Mathematics Education-Based Student Worksheets To Enhance Higher-Order Thinking Skills and Mathematical Ability. *Infinity Journal*, 13(2), 285–300. <https://doi.org/10.22460/infinity.v13i2.p285-300>

Syafriafdi, N., Fauzan, A., Arnawa, I. M., Anwar, S., & Widada, W. (2019). The tools of mathematics learning based on realistic mathematics education approach in elementary school to improve math abilities. *Universal Journal of Educational Research*, 7, 1532–1536. <https://doi.org/10.13189/ujer.2019.070707>

Treffers, A. (1987). *Three Dimensions. A Model of Goal and Theory Description in Mathematics Instruction – The Wiskobas Project*. The Netherlands, Dordrecht: Reidel.

Trisnawati, T., Pratiwi, R., & Waziana, W. (2018). The effect of realistic mathematics education on student's mathematical communication ability. *Malikussaleh Journal of Mathematics Learning (MJML)*, 1(1), 31. <https://doi.org/10.29103/mjml.v1i1.741>

Tumangger, W. R., Khalil, I. A., Charitas, R., & Prahmana, I. (2024). The Impact of Realistic Mathematics Education-based Student Worksheet for Improving Students' Mathematical Problem-Solving Skills. *IndoMath: Indonesia Mathematics Education*, 12, 196–215. <https://indomath.org/index.php/>

Warsito, Nuraini, Y., Sukirwan, & Muhtadi, D. (2019). The design learning of fraction with realistic mathematics education in elementary school. *Journal of Physics: Conference Series*, 1188(1). <https://doi.org/10.1088/1742-6596/1188/1/012110>

Webb, D. C., & Peck, F. A. (2020). From tinkering to practice—The role of teachers in the application of Realistic Mathematics Education principles in the United States. *International reflections on the Netherlands didactics of mathematics*, 21-36. https://doi.org/10.1007/978-3-030-20223-1_2

Wida Rachmiati. (2024). STUDENT LEARNING RESULTS ON ADDING FRACTIONS USING THE REALISTIC MATHEMATICS EDUCATION (RME) APPROACH: AN IMPROVEMENT EFFORT Wida. *PIONIR: JURNAL PENDIDIKAN*, 13(2), 1–23. <https://jurnal.araniry.ac.id/index.php/Pionir/index%0A1>

Yaasmin, L. S. (2024). Improving Mathematics Learning Outcomes on Fraction Material through a Realistic Mathematics Approach for Elementary School Students. *Insights: Journal of Primary Education Research*, 1(1), 11–17. <https://doi.org/10.59923/insights.v1i1.70>

Yunita, H. R., Roemintoyo, R., & Salimi, M. (2025). E-Module Math O_Pedia: A Digital Learning Innovation for Elementary Students' Understanding of Fractions. *Jurnal Ilmiah Sekolah Dasar*, 1, 67–77. <https://doi.org/10.23887/jisd.v9i1.91355>

Zainil, M. (2017). *Learning Fraction With Indonesia Realistic Mathematics Education (PMRI)*. 118, 172–178. <https://doi.org/10.2991/icset-17.2017.30>

Zhang, L., Shang, J., Pelton, T., & Pelton, L. F. (2020). Supporting primary students' learning of fraction conceptual knowledge through digital games. *Journal of Computer Assisted Learning*, 36(4), 540–548. <https://doi.org/10.1111/jcal.12422>

Zulkardi, Z., Putri, R. I. I., & Wijaya, A. (2020). Two decades of realistic mathematics education in Indonesia. *International reflections on the Netherlands didactics of mathematics*, 325-340. https://doi.org/10.1007/978-3-030-20223-1_18