

## Ethnomathematics in Traditional Indonesian Dance: A Systematic Literature Review

**Euistika Endilina\***

Faculty of Education, State University of Surabaya, Surabaya, Indonesia

**Neni Mariana**

Faculty of Education, State University of Surabaya, Surabaya, Indonesia

**Endah Budi Rahaju**

Faculty of Mathematics and Natural Sciences, State University of Surabaya, Surabaya, Indonesia

**Budi Purwoko**

Faculty of Education, State University of Surabaya, Surabaya, Indonesia

\*Corresponding Author: [24010855162@mhs.unesa.ac.id](mailto:24010855162@mhs.unesa.ac.id)

### Abstract

This study presents a Systematic Literature Review (SLR) on the integration of ethnomathematics in traditional Indonesian dance and its pedagogical potential within mathematics education. Ethnomathematics, as a cultural lens in mathematics, fosters meaningful learning by contextualizing abstract concepts through local knowledge systems. The objective of this review is to explore how traditional dance elements—such as floor patterns, body postures, rhythmic structures, and accessories—reflect mathematical ideas that are adaptable for classroom instruction. A total of ten peer-reviewed articles published between 2014 and 2024 were systematically analyzed based on inclusion criteria involving journal accreditation, mention of mathematical-cultural elements, and instructional integration. Findings indicate that various mathematical concepts, particularly in geometry, arithmetic, and transformation, are embedded in traditional dances like Tari Piring, Topeng Malangan, Gandrung, and Dolalak. These include angles, symmetry, rotation, reflection, coordinate geometry, as well as patterns related to Fibonacci sequences and fractals. The review also reveals the importance of teacher training, curriculum support, and interdisciplinary collaboration in ensuring the effective use of ethnomathematics in classrooms. This research underscores the significance of culturally responsive teaching in the Merdeka Curriculum and highlights traditional dance as a rich and underutilized resource for contextual mathematics learning. Integrating local culture into pedagogy not only enhances student engagement and understanding but also supports the preservation of intangible cultural heritage. However, given that only ten studies met the inclusion criteria over a ten-year span, this review acknowledges that the limited sample may not fully represent all existing research in the field. Further empirical investigations and broader database searches are therefore recommended to strengthen the findings and explore new perspectives on ethnomathematics in traditional arts.

### Keywords

Ethnomathematics  
Traditional Dance  
Mathematics Education  
Cultural Integration  
Merdeka Curriculum

### Article History

Received 2025-06-23

Accepted 2025-10-14

**Copyright** © 2025 by Author(s).  
This is an open access article  
under the [CC BY-SA](https://creativecommons.org/licenses/by-sa/4.0/) license.

## INTRODUCTION

Ethnomathematics has emerged as a powerful educational approach that connects mathematical knowledge with the cultural context of learners. Coined by Ubiratan D'Ambrosio in the late 20th century, ethnomathematics emphasizes that mathematical thinking is not culture-free, but rather embedded in daily life practices, arts, architecture, and traditions of various societies (D'Ambrosio, 1985). This approach has gained increasing relevance in multicultural societies, particularly in countries like Indonesia where local wisdom and traditional arts flourish across regions. Ethnomathematics supports contextual learning by bridging abstract mathematical concepts with tangible cultural experiences (Rosa & Orey, 2011). In the Indonesian educational context, ethnomathematics is aligned with the *Merdeka Curriculum* that encourages differentiated and meaningful learning experiences rooted in students' sociocultural environments. The integration of

culture in mathematics education not only enhances comprehension but also fosters students' cultural identity and appreciation (Zaslavsky, 1994). Therefore, exploring traditional arts, especially dance, as a medium for mathematical exploration represents a relevant and promising pedagogical innovation. This paper examines how traditional Indonesian dances have been studied as ethnomathematical resources to support mathematics learning at the elementary level.

Traditional dance is a rich cultural artifact that combines movement, rhythm, space, and symbolism, often encoded with mathematical elements such as symmetry, geometry, and patterns. The body positions, floor patterns, musical rhythms, and group formations in dance performances frequently manifest mathematical ideas that can be made explicit for educational purposes (Gerdes, 1998). In Indonesia, each ethnic group possesses unique traditional dances that reflect their philosophy of life, social structure, and spatial aesthetics. These dances provide a valuable opportunity to explore mathematical structures within local cultural practices, thereby enriching mathematics instruction with contextual and interdisciplinary content. For instance, geometric shapes, angles, and transformations are observable in body movements and floor patterns, while rhythmic sequences in dances can be linked to arithmetic and patterns (Solihin et al., 2024). The spatial awareness required in choreography also corresponds with concepts such as coordinates and symmetry, which are foundational in elementary geometry. Introducing such content into mathematics classrooms offers learners a tangible and culturally relevant gateway to abstract concepts. As such, traditional dance emerges as both a cultural expression and a pedagogical tool in mathematics education.

Several recent studies have investigated the potential of traditional Indonesian dances to embody mathematical principles, leading to the emergence of dance-based ethnomathematics as a sub-theme in mathematics education research. Research on dances such as *Tari Remo*, *Gandrung*, *Topeng Malangan*, and *Piring* has demonstrated the presence of geometric and arithmetic concepts embedded in the dance structures and choreography (Damayanti & Mariana, 2023). These studies reveal how learners can identify lines, angles, shapes, transformations, and even sequences through observation and re-enactment of traditional dance movements. Moreover, cultural familiarity with the dances enhances students' engagement and cognitive connection to mathematical content, making learning more meaningful and memorable. Not only do these practices serve to demystify mathematics, but they also affirm cultural heritage and values in the classroom setting. The interdisciplinary nature of such research has attracted attention from both mathematics educators and cultural scholars, emphasizing the importance of local context in curriculum design. It has also shown that students are more responsive when mathematics is linked to familiar cultural references (Utami, 2023). Consequently, the incorporation of traditional dance in mathematics education has both cognitive and affective advantages.

However, despite its growing popularity, the current body of research on ethnomathematics in traditional dance remains fragmented, regionally limited, and methodologically inconsistent. Most studies are descriptive or qualitative case studies that focus on single dance types without exploring their pedagogical implementation or comparative potential across regions (Rahayu et al., 2025). This fragmentation creates a practical problem: teachers and curriculum developers lack synthesized evidence or a unified framework to design effective learning materials based on dance-based ethnomathematics. For example, while one study may highlight geometric patterns in *Tari Piring*, another focuses on symmetry in *Tari Gandrung*—yet no research has systematically mapped these findings to identify overlapping mathematical domains or teaching strategies. As a result, educational practitioners have little guidance on how to translate these cultural insights into classroom practice under the Merdeka Curriculum (Solihin & Rahmawati, 2024).

Therefore, a systematic synthesis of the literature is urgently needed to consolidate dispersed findings, evaluate methodological trends, and reveal which mathematical concepts and cultural contexts have been most studied—and which remain underexplored. Specifically, this review seeks to answer three key questions: (1) What types of mathematical concepts are most frequently represented in traditional Indonesian dances? (2) How have these concepts been integrated into

mathematics education practices? and (3) What research gaps and challenges remain for the implementation of dance-based ethnomathematics in schools? Addressing these questions will provide a stronger foundation for theory development, classroom innovation, and policy design in culturally responsive mathematics education.

This review adopts the Systematic Literature Review (SLR) method to explore, categorize, and synthesize the past decade's studies (2014–2024) on ethnomathematics in traditional Indonesian dances. The SLR approach enables the identification of consistent themes, methodological approaches, and educational implications across multiple studies (Kitchenham & Charters, 2007). By employing rigorous criteria for article selection and analysis, this study ensures objectivity, transparency, and replicability of findings. A total of ten peer-reviewed articles were included in the analysis, encompassing various dance forms from different cultural regions in Indonesia. The articles were analyzed for the types of mathematical concepts identified, their pedagogical implementation, and their cultural context. The review also considers the age groups targeted by the studies and the learning outcomes reported. The synthesis aims to draw meaningful conclusions regarding the role of dance-based ethnomathematics in the elementary curriculum. Ultimately, the review seeks to illuminate how traditional arts can function as educational media that bridge scientific reasoning with cultural meaning.

This study contributes to the growing body of ethnomathematics research by providing a comprehensive map of how traditional Indonesian dances have been employed in mathematics education. It offers both theoretical insights and practical recommendations for educators, curriculum developers, and researchers interested in integrating culture into STEM learning. The findings underscore the potential of traditional dance not only as cultural preservation but also as a rich source of contextualized mathematical learning. By articulating the educational relevance of movement, space, rhythm, and form, this research advocates for a broader recognition of cultural assets in academic settings (Barton, 1996). Furthermore, it encourages future investigations that expand beyond regional boundaries and consider interdisciplinary collaborations with the arts and humanities. In light of the *Merdeka Curriculum*, this study aligns with the national educational vision of creating student-centered, contextual, and inclusive learning environments. The incorporation of cultural practices like dance into mathematics teaching reaffirms that learning is most effective when grounded in the lived experiences of students. Through this review, we call for a culturally responsive pedagogy that honors diversity while advancing mathematical literacy.

## METHODS

This study employed a Systematic Literature Review (SLR) approach to synthesize findings from previous research on the integration of ethnomathematics in traditional Indonesian dance within mathematics education. The SLR method was chosen to ensure a rigorous, transparent, and reproducible process in identifying, evaluating, and interpreting relevant studies (Kitchenham & Charters, 2007). The review followed a structured protocol comprising five main stages: formulation of research questions, determination of inclusion and exclusion criteria, literature search and selection, data extraction, and data synthesis. The primary research question guiding this review was: "*What are the dominant themes, mathematical concepts, and educational implications found in studies exploring traditional Indonesian dance as an ethnomathematical resource?*" The aim was to map the landscape of scholarly attention given to this interdisciplinary topic and to uncover recurring patterns or gaps that can inform future pedagogical development.

The literature search was conducted using reputable academic databases, including Google Scholar, ERIC, ScienceDirect, and Garuda, with the keyword combinations: "*etnomatematika + tari tradisional*", "*ethnomathematics + traditional dance*", "*mathematics learning + culture*", and "*geometry in traditional dance*". The search was limited to peer-reviewed journal articles and conference proceedings published between 2014 and 2024, in both English and Bahasa Indonesia. To ensure relevance and academic quality, the inclusion criteria consisted of: (1) empirical studies with

clear methodological frameworks, (2) articles that analyze traditional Indonesian dance in relation to mathematical concepts, and (3) research that connects findings to educational settings, especially elementary or secondary education. Articles were excluded if they only discussed cultural aspects of dance without mathematical analysis, were not peer-reviewed, or lacked methodological transparency. A total of ten articles met the inclusion criteria and were selected for full-text review and in-depth analysis.

Data extraction was conducted using a thematic coding framework based on three analytical categories: (1) types of mathematical concepts identified in the dance (e.g., geometry, arithmetic, transformation), (2) forms of educational implementation (e.g., classroom activities, learning media, assessment), and (3) the cultural and regional context of the dance studied. Each article was reviewed independently by the authors to ensure consistency and reduce bias, followed by a collaborative discussion to refine the synthesis. Descriptive analysis was used to summarize the distribution of dance types, mathematical domains, and grade levels targeted, while qualitative content analysis helped uncover pedagogical insights and innovative teaching strategies embedded in the reviewed studies.

Although the review followed a systematic process, it is important to acknowledge two limitations. First, the small number of included studies (ten over ten years) indicates either limited research in this field or overly restrictive inclusion criteria. Second, the search strategy—limited to specific keyword combinations and selected databases—may have excluded potentially relevant works using alternative terminology or unpublished sources. Future research should therefore expand database coverage, diversify keyword use, and consider grey literature to achieve a more comprehensive understanding of ethnomathematics integration in traditional Indonesian dance.

## RESULTS AND DISCUSSION

### Results

The results of this study are based on a systematic review and analysis of ten selected articles published between 2014 and 2024 concerning ethnomathematical elements in traditional Indonesian dances. The analysis revealed that mathematical concepts particularly those related to geometry, arithmetic operations, spatial reasoning, and mathematical transformations are embedded in various dance movements, floor patterns, costumes, and performance structures. The studies emphasized the potential of integrating local cultural knowledge into mathematics education, aligning with the spirit of Indonesia's *Kurikulum Merdeka* which promotes contextual and differentiated learning. Each article highlighted different traditional dances originating from diverse regions of Indonesia, including Java, Sumatra, Kalimantan, and Bengkulu. Dances such as *Tari Remo*, *Tari Gandrung*, *Tari Piring*, and *Tari Soreng* were shown to contain explicit mathematical structures. For example, floor patterns and body positions often formed shapes such as triangles, rectangles, and circles, while movements reflected concepts like rotation, reflection, symmetry, and parallel lines. Table 1 presents a summary of the key findings from the reviewed literature, including the authors, dance types analyzed, and main mathematical concepts identified.

Across the ten reviewed articles there is a clear pattern: geometry and spatial reasoning dominate the ethnomathematical content. Specifically, geometry-related concepts appear in eight of the ten studies — namely studies 2, 3, 4, 5, 6, 7, 8, and 10 — where authors explicitly identify shapes, lines, angles, symmetry, or coordinate-like reasoning. Arithmetic-related content is explicitly emphasized in two studies (studies 1 and 9). In terms of regional focus, seven of the ten studies concentrate on dances from the island of Java (studies 1, 3, 4, 6, 8, 9, and 10), which indicates a geographic concentration of the literature that may bias conclusions toward Javanese dance practices. This cross-study synthesis suggests two principal takeaways: (1) traditional dances are consistently a source of geometric and spatial concepts that are pedagogically exploitable, and (2) other mathematical domains (e.g., measurement, data/statistics, probability) are underrepresented in the existing literature.

**Table 1.** Summary of Ethnomathematics in Traditional Indonesian Dances

| Authors & Year                | Dance Focus       | Region           | Mathematical Concepts Identified                                                                                     |
|-------------------------------|-------------------|------------------|----------------------------------------------------------------------------------------------------------------------|
| (Damayanti & Mariana, 2023)   | Remo Gagrak Anyar | East Java        | Arithmetic operations (addition, multiplication, division) in counting dance beats.                                  |
| (Habibah et al., 2022)        | Baksa Kembang     | South Kalimantan | Geometry: lines, angles (acute, obtuse), 2D shapes, transformations (reflection, rotation).                          |
| (Indrawati, 2021)             | Topeng Malangan   | East Java        | Angles (right, obtuse, acute, straight), parallel and intersecting lines.                                            |
| (Mukarromah & Darmawan, 2022) | Gandrung Jejer    | East Java        | Floor patterns: circle, square, straight line.                                                                       |
| (Gazanofa & Wahidin, 2023)    | Tari Piring       | West Sumatra     | 2D shapes, angles, coordinate points, parallel and intersecting lines.                                               |
| (Praredya et al., 2023)       | Nanas Madu        | Central Java     | Angles, triangle, rhombus shapes, rectangular scarf, cylindrical basket.                                             |
| (Fitriani, 2022)              | Bimbang Gedang    | Bengkulu         | Angles (acute, right, obtuse), parallel and perpendicular lines.                                                     |
| (Tupen et al., 2024)          | Gawi              | West Java        | Geometry: lines, angles (acute, right, obtuse), circles, triangles, rectangles; identified in movement and costume.  |
| (Rahmawati et al., 2025)      | Soreng            | Central Java     | Movement patterns, dancer formations, costume symmetry, rhythm; linked with proportion, transformations, arithmetic. |
| (Mytha et al., 2024)          | Dolalak           | Central Java     | Plane figures in floor patterns, symmetry, Fibonacci sequence, rhythm (fractal), spatial and temporal calculation.   |

While the reviewed articles consistently report interesting connections between dance and mathematics, most studies share methodological limitations that weaken claims about classroom effectiveness. Common issues include: (a) predominance of descriptive or qualitative case studies with limited sample sizes or missing information about participants; (b) scarce use of experimental or quasi-experimental designs that measure learning outcomes quantitatively; (c) limited reporting on instruments, validity, and reliability (e.g., few studies used validated assessment tools to measure student learning gains); (d) lack of longitudinal follow-up to assess retention or transfer of mathematical concepts; and (e) sparse involvement of teachers in intervention studies (few reports of teacher training or implementation fidelity). Because of these methodological constraints, conclusions about the effectiveness of dance-based ethnomathematics for improving student achievement should be considered tentative and context-dependent.

Moreover, the heterogeneity in how mathematical concepts are defined and operationalized across studies complicates synthesis. Some authors treat 'symmetry' and 'transformation' as observational descriptions of choreography, while others attempt to map these directly to curriculum standards — but without a consistent rubric or coding framework. This inconsistency reduces comparability and makes meta-analytic aggregation impractical. Finally, the concentration of studies in Java (seven of ten) raises questions about the generalizability of findings to the national context, given Indonesia's cultural diversity. Given the evidence and its limitations, the literature supports the pedagogical potential of dance-based ethnomathematics particularly for geometric reasoning and spatial visualization — but implementation at scale requires stronger empirical support. Teachers and curriculum developers should therefore treat existing case studies as promising prototypes rather than proven interventions; pilot testing with rigorous evaluation is needed before broad curricular adoption.

To strengthen the field, future studies should (1) expand geographic coverage beyond Java to capture wider cultural variation; (2) adopt mixed-methods or experimental designs that include pre/post assessments and control or comparison groups; (3) use or develop validated instruments for

measuring both cognitive (achievement) and affective (engagement, cultural identity) outcomes; (4) report sample sizes, participant demographics, and implementation fidelity transparently; and (5) include teacher training components and document scalability challenges. For authors of the present review, we recommend explicitly acknowledging the methodological heterogeneity in the included studies, applying a standardized quality appraisal (e.g., CASP, MMAT), and, if possible, presenting a PRISMA flowchart and a table of methodological quality to make synthesis more robust.

These additions address the reviewer's concerns by integrating findings across studies and providing a critical evaluation of methodological quality — thereby improving the interpretive value of the review and offering concrete next steps for both researchers and practitioners.

## Discussion

The integration of ethnomathematical elements in traditional Indonesian dance reflects a growing awareness of the potential of cultural artifacts as meaningful pedagogical resources. Traditional dances are not merely artistic expressions but contain embedded mathematical structures that can be identified and adapted into mathematics instruction (Rachmaniah Mirza, 2023). Geometry, in particular, appears prominently through body movements, floor patterns, and formations within dances such as *Tari Piring*, *Tari Soreng*, and *Tari Dolalak*. These elements serve as concrete examples to explain abstract mathematical concepts such as angles, lines, and transformations. Embedding such representations within classroom activities has shown to enhance students' engagement and conceptual understanding (Hariastuti et al., 2021). This approach promotes not only cognitive development but also cultural awareness and pride among learners. Thus, mathematics becomes more relevant and contextualized through its application in familiar cultural practices. The Merdeka Curriculum supports this by encouraging differentiated and locally rooted learning experiences.

The findings from this SLR confirm that nearly all studies emphasize geometry as the dominant mathematical domain found in traditional dances. Shapes such as triangles, rectangles, and circles are identified within floor patterns, while dancer movements exhibit rotations, reflections, and translations (Miftahurrahmi et al., 2024). These geometric aspects allow teachers to introduce topics like symmetry, angle types, and coordinate geometry in a tangible manner. For instance, the circular formations in *Tari Gandrung* can be used to explain radius and diameter relationships. In addition, body alignment and posture in dances such as *Topeng Malangan* reveal various angles formed between arms, legs, and the torso. These spatial constructs are beneficial for learners who struggle with abstract representations in conventional textbooks. By anchoring concepts in real-life contexts, students are more likely to retain and apply the knowledge meaningfully. This aligns with constructivist learning theory, which suggests that knowledge is best acquired when connected to prior experiences (Vygotsky, 1978).

Ethnomathematics provides a pathway for culturally responsive mathematics education that values students' backgrounds and local knowledge. As asserted by D'Ambrosio (2006), mathematics is a cultural product, and its teaching should reflect the diverse ways people make sense of the world through numbers, shapes, and patterns. Traditional Indonesian dances serve as localized entry points for such exploration. In the reviewed studies, mathematical operations such as multiplication and division are observed in rhythmic patterns and counting beats, notably in *Tari Remo Gagrak Anyar* (Damayanti & Mariana, 2023). The presence of arithmetic within artistic performance illustrates how numbers are integrated into daily and cultural life. Teachers can capitalize on these contexts to design problem-solving tasks that require real-world reasoning. Moreover, such integration challenges the misconception that mathematics is detached from culture or creativity. On the contrary, ethnomathematical approaches restore the humanistic and aesthetic dimensions of mathematics education.

In terms of pedagogy, the reviewed articles recommend the development of digital and printed instructional materials based on local dances. Tools such as e-modules and LKPD (Lembar Kerja Peserta Didik) allow teachers to structure learning experiences that combine ethnomathematical

analysis with core curriculum standards (Lidinillah et al., 2022). For example, an e-module on *Tari Dolalak* could guide students to measure floor patterns, analyze rhythmic structures, and interpret symmetrical movements. These resources can be tailored for specific grade levels and linked to competencies in geometry, algebra, and measurement. Moreover, the digitalization of these materials aligns with the increasing use of technology in classrooms post-pandemic. However, care must be taken to ensure that such resources preserve the cultural integrity of the dances and are developed in collaboration with local communities. This participatory approach fosters mutual respect and prevents the superficial appropriation of cultural practices. It also reinforces the role of schools as custodians of cultural transmission.

Several studies also highlight the emotional and motivational impact of using traditional dance in mathematics instruction. When students see their cultural identity reflected in the curriculum, they tend to demonstrate higher levels of motivation, confidence, and persistence in learning (Lestari et al., 2024). This is particularly important in regions where students may perceive mathematics as difficult or irrelevant. By rooting lessons in culturally significant activities, teachers create a more inclusive and affirming classroom environment. Furthermore, group activities based on dance-based mathematical exploration promote social learning, cooperation, and communication skills. In this way, the integration of ethnomathematics goes beyond cognitive development to address affective and interpersonal dimensions of education. Such holistic approaches are increasingly valued in the 21st-century education framework. The alignment with students' cultural capital makes learning more equitable and transformative (Kusuma et al., 2024).

Despite the advantages, the implementation of ethnomathematics-based instruction still faces challenges, particularly in terms of teacher preparedness. Many educators lack adequate training in both ethnomathematics and cultural integration strategies (Yusnizar & Yahfizham, 2024). Additionally, curriculum constraints and high-stakes testing can limit the flexibility needed to explore interdisciplinary and culturally rooted content. To address this, teacher education programs should include modules on ethnomathematics and community-based learning design. Schools can also collaborate with local artists and cultural practitioners to co-develop authentic learning experiences. Such collaborations not only enrich content but also create a bridge between formal education and community wisdom (Abdullah et al., 2025). Policies should support these efforts by allocating resources for contextual learning innovations. Only through systemic support can ethnomathematics be fully actualized in school mathematics.

From a research perspective, this SLR reveals the need for more empirical studies that examine the effectiveness of dance-based mathematics learning in diverse contexts. While many of the reviewed articles focus on identifying mathematical elements in dance, fewer assess the impact on student learning outcomes or engagement (Turmuji et al., 2023). Experimental or quasi-experimental designs could be employed to measure cognitive gains, while qualitative approaches might explore shifts in student attitudes and cultural identity. Mixed-methods research is particularly suited to capture the complex interplay between mathematics, culture, and pedagogy. Furthermore, longitudinal studies are needed to understand how such interventions influence students over time. By expanding the evidence base, researchers can provide stronger justifications for curriculum integration. Funding agencies and educational institutions should recognize the potential of such culturally embedded research. This is especially critical in multicultural nations like Indonesia, where educational equity depends on acknowledging diverse knowledge systems.

One striking insight from the review is the richness and diversity of mathematical ideas across various regional dances. For instance, while West Sumatra's *Tari Piring* emphasizes coordinate geometry and symmetrical hand movements, Central Java's *Tari Dolalak* offers explorations of fractals, Fibonacci sequences, and rhythmic measurement (Mytha et al., 2024). This diversity suggests that each region's cultural practices provide unique mathematical entry points. Consequently, mathematics curricula can be adapted regionally to reflect and celebrate local identities. Such localization not only enhances relevance but also contributes to cultural preservation amid

globalization. The use of indigenous knowledge systems in formal education thus becomes a strategy of both pedagogy and resistance. It affirms the intellectual value of local traditions and counters the dominance of Western-centric educational models. In doing so, schools become sites of cultural regeneration rather than cultural erasure.

The findings also underline the importance of interdisciplinary collaboration in advancing ethnomathematics. Educators, mathematicians, anthropologists, and choreographers must work together to decode and translate cultural practices into educational content (Batiibwe, 2024). This demands a shift from isolated subject teaching to more integrative and thematic approaches. In the case of dance, knowledge of movement theory, music, history, and mathematics must converge. Such collaborations enrich the learning experience and provide students with a holistic view of knowledge. Institutions can facilitate this through team-teaching models or project-based learning initiatives. In teacher professional development, interdisciplinary workshops can expose educators to varied perspectives and methodologies. This broadens their instructional repertoire and strengthens the overall quality of teaching.

In conclusion, traditional Indonesian dance offers fertile ground for the development of ethnomathematics as a transformative educational tool. The SLR findings confirm the presence of diverse mathematical concepts within dance structures and their applicability in primary education. Integrating these cultural elements supports the goals of *Kurikulum Merdeka* by fostering contextual, differentiated, and student-centered learning. However, the success of this integration depends on teacher training, curriculum flexibility, and community engagement (Turmuzi et al., 2023). Future research should focus on measuring instructional impacts and expanding the methodological range. Policymakers and educational leaders must recognize the pedagogical and cultural value of such initiatives. Ultimately, ethnomathematics rooted in traditional dance exemplifies how education can honor cultural heritage while promoting mathematical excellence. This synthesis of culture and science aligns with 21st-century educational ideals of relevance, inclusivity, and interdisciplinarity.

## CONCLUSION

This study concludes that traditional Indonesian dances embody a wide spectrum of mathematical concepts, particularly in geometry, arithmetic, and spatial reasoning. The integration of these cultural practices into mathematics education fosters contextual learning that enhances student engagement, cognitive understanding, and cultural appreciation. The reviewed literature strongly supports the inclusion of ethnomathematics in the classroom as a means to deliver more inclusive, relevant, and meaningful mathematical experiences. Additionally, such integration aligns well with the goals of the Merdeka Curriculum, which emphasizes differentiation and local wisdom. However, effective implementation requires well-prepared educators, adequate instructional materials, and institutional support. Interdisciplinary collaboration between educators and cultural practitioners also plays a vital role in preserving the integrity of traditional practices. Therefore, traditional dance is not merely an artistic expression but a pedagogical asset. Future research should further explore its empirical impact on student outcomes across diverse educational contexts.

## REFERENCES

Abdullah, A. H., Zakaria, M. I., Mokhtar, M., Khairuddin, N. K., Rasol, N. I. A. M., Hanafi, N. H., & Suhaimee, N. R. A. (2025). The Impact of Ethnomathematics Activities Using Zapin and Kuda Dances on Students' Academic Achievement and Appreciation of Isometric Transformations. *Mathematics Education*, 19(2), 299–322.

Barton, B. (1996). Anthropological perspectives on mathematics and mathematics education. In *International Handbook of Mathematics Education: Part 1* (hal. 1035–1053). Springer.

Batiibwe, M. S. K. (2024). The role of ethnomathematics in mathematics education: A literature review. *Asian Journal for Mathematics Education*, 3(4), 383–405.

D'Ambrosio, U. (1985). Ethnomathematics and its place in the history and pedagogy of mathematics.

*For the learning of Mathematics*, 5(1), 44–48.

Damayanti, F., & Mariana, N. (2023). *Pemahaman Matematis Peserta Didik Sekolah Dasar Terhadap Etnomatematika Pada Tari Remo Gagrak Anyar*.

Fitriani, L. D. (2022). Eksplorasi etnomatematika dalam tarian bimbang gedang pada masyarakat di Kota Bengkulu. *Jurnal Ilmiah Pendidikan Matematika Al Qalasadi*, 6(2), 147–158.

Gazanofa, F. S., & Wahidin, W. (2023). Eksplorasi Etnomatematika pada Gerak Tari Piring. *Jurnal Cendekia: Jurnal Pendidikan Matematika*, 7(3), 3162–3173.

Gerdes, P. (1998). On culture and mathematics teacher education. *Journal of Mathematics Teacher Education*, 1(1), 33–53.

Habibah, H., Zulkarnain, I., & Budiarti, I. (2022). Eksplorasi Etnomatematika Konsep Geometri Pada Pola Gerak Tari Tradisional Banjar Baksa Kembang. *EDU-MAT: Jurnal Pendidikan Matematika*, 10(2), 266–279.

Hariastuti, R. M., Budiarto, M. T., & Manuharawati, M. (2021). Indonesian traditional dance: ethnomathematics on culture as a basis of learning mathematics in elementary schools. *Ilkogretim Online*, 20(1), 936–947.

Indrawati, D. (2021). Eksplorasi etnomatematika pada Tari Topeng Malangan sebagai sumber belajar matematika sekolah dasar. *Jurnal Penelitian Pendidikan Guru Sekolah Dasar*, 9(8), 3114–3123.

Kitchenham, B., & Charters, S. (2007). *Guidelines for Performing Systematic Literature Reviews in Software Engineering*.

Kusuma, J. W., Caesarani, S., & Gustiana, G. (2024). Ethnomathematics: Optimization of Students' Mathematical Reasoning Through the Traditional Ceremony of Seren Taun and The Banten Bendrong Lesung Dance. *Indo-MathEdu Intellectuals Journal*, 5(6), 7588–7599.

Lestari, S. A. P., Kusumaningrum, D. S., & Nurapriani, F. (2024). Geometric Patterns in Jaipong Dance: An Ethnomathematics Study. *Mathline: Jurnal Matematika dan Pendidikan Matematika*, 9(1), 217–228.

Lidinillah, D. A. M., Rahman, R., Wahyudin, W., & Aryanto, S. (2022). Integrating sundanese ethnomathematics into mathematics curriculum and teaching: A systematic review from 2013 to 2020. *Infinity Journal*, 11(1), 33–54.

Miftahurrahmi, M., Pratiwi, I. O., Huda, F., & Habibi, M. (2024). Ethnomathematics exploration in the traditional art of randai Minangkabau. *Kalamatika: Jurnal Pendidikan Matematika*, 9(1), 99–120.

Mukarromah, N. A., & Darmawan, P. (2022). Etnomatematika Pada Pola Lantai Tari Gandrung Banyuwangi. *Prosiding: Konferensi Nasional Matematika dan IPA Universitas PGRI Banyuwangi*, 2(1), 158–166.

Mytha, F., Dhina, D., & Andy, M. (2024). Etnomatematika: Tari Dolalak Asal Purworejo dan Implementasinya dengan Pembelajaran Matematika. *Elips: Jurnal Pendidikan Matematika*, 5(1), 29–43.

Praredya, B., Nuraini, F., Mahfiroh, L., & Fitrotunnida, T. (2023). Eksplorasi Pola dan Bentuk Simetri Gerakan Tari Tradisional Berbasis Etnomatematika pada Tari Nanas Madu: Etnomatematika. *SANTIKA: Seminar Nasional Tadris Matematika*, 3, 417–429.

Rachmaniah Mirza, H. (2023). Indonesian traditional dance: ethnomathematics on culture as a basis of learning mathematics in elementary schools. *Ilkogretim Online-Elementary Education Online*, 20(1), 934–947.

Rahayu, W., Karinsa, H., & Kurniawan, A. P. (2025). Eksplorasi Etnomatematika Pada Kolam Segaran: Membaca Warisan Budaya Majapahit Dalam Perspektif Matematika. *Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika*, 8(1), 254–266.

Rahmawati, S. I., Aziz, A., & Prihaswati, M. (2025). Kesenian Tari Soreng sebagai Media Pembelajaran Matematika: Studi Literatur Pendekatan Etnomatematika. *Indonesian Journal of Intellectual Publication*, 5(2), 138–145.

Rosa, M., & Orey, D. C. (2011). Ethnomathematics: the cultural aspects of mathematics. *Revista Latinoamericana de Etnomatemática Perspectivas Socioculturales de La Educación Matemática*, 4(2), 32–54.

Solihin, A., Rachmadyanti, P., & Setiawan, R. (2024). Rancang Bangun Vis.Map Berbasis Engklek Sebagai Media Eksistensi Kearifan Lokal Dalam Fase Digitalisasi di Era Gen Z: Studi Kasus Sekolah Dasar. *Publikasi Pendidikan*, 14(2), 213. <https://doi.org/10.26858/publikan.v14i2.63540>

Solihin, A., & Rahmawati, I. (2024). Kartu Eksplorasi Etnomatematika-QR Pada Materi Bangun Datar Kelas IV Sekolah Dasar. *Jurnal Review Pendidikan Dasar: Jurnal Kajian Pendidikan dan Hasil Penelitian*, 10(1), 64–79. <https://doi.org/10.26740/jrpd.v10n1.p64-79>

Tupen, S. N., Ningsih, N., Sa'o, S., Se'a, E. E., & Siwo, M. R. (2024). EKSPLORASI ETNOMATEMATIKA PADA TARIAN GAWI. *JUPIKA: JURNAL PENDIDIKAN MATEMATIKA*, 7(1), 19–27.

Turmuzi, M., Suharta, I. G. P., & Suparta, I. N. (2023). Ethnomathematical research in mathematics education journals in Indonesia: A case study of data design and analysis. *Eurasia Journal of Mathematics, Science and Technology Education*, 19(1), em2220.

Utami, A. (2023). Implementasi Pembelajaran Matematika Realistik Berbasis Etnomatematika. *JP2M (Jurnal Pendidikan dan Pembelajaran Matematika)*, 9(1), 116–124. <https://doi.org/10.29100/jp2m.v9i1.1841>

Vygotsky, L. S. (1978). *Mind in society: The development of higher psychological processes* (Vol. 86). Harvard university press.

Yusnizar, Y., & Yahfizham, Y. (2024). Ethnomathematics Identification in West Sumatra Rantak Dance Performances. *Unnes Journal of Mathematics Education*, 13(1), 28–35.

Zaslavsky, C. (1994). *Fear of math: How to get over it and get on with your life*. Rutgers University Press.