Perspektif Realisme terhadap Pemanfaatan Artificial Intelligence pada Pembelajaran Abad 21

Authors

  • Maya Putriwan Universitas Negeri Makassar
  • Ismail

DOI:

https://doi.org/10.56916/ejip.v4i4.2683

Keywords:

Realisme, Kecerdasan buatan, Pembelajaran Abad 21, Filsafat Pendidikan

Abstract

Penelitian ini bertujuan untuk mengkaji pemanfaatan Artificial Intelligence (AI) dalam pembelajaran abad 21 melalui perspektif filsafat realisme. Realisme sebagai aliran filsafat pendidikan menekankan pentingnya kenyataan objektif, pengalaman empiris, dan pengetahuan berbasis bukti, sehingga memiliki relevansi kuat dengan tuntutan pembelajaran modern yang menekankan penguasaan kompetensi abad 21. Metode penelitian yang digunakan adalah kajian pustaka (literature review) dengan menelaah buku, artikel jurnal, dan dokumen ilmiah yang dipublikasikan pada rentang tahun 2015–2025, dengan prioritas literatur terbaru (2020 ke atas). Analisis dilakukan melalui tiga tahap, yaitu reduksi data, penyajian data, dan penarikan kesimpulan, untuk mengevaluasi keterkaitan antara realisme, AI, dan pembelajaran abad 21. Hasil kajian menunjukkan bahwa realisme menekankan pentingnya pembelajaran yang berbasis pada fakta dan pengalaman nyata, sementara pembelajaran abad 21 menuntut penguasaan keterampilan berpikir kritis, kreativitas, kolaborasi, dan komunikasi (4C). AI berfungsi sebagai instrumen aplikatif yang mampu menghadirkan pengalaman belajar berbasis data nyata, simulasi realistis, serta materi adaptif sesuai kebutuhan siswa. Integrasi AI dalam pembelajaran tidak hanya memperkuat prinsip realisme, tetapi juga mendukung tercapainya kompetensi 4C secara lebih efektif. Integrasi realisme, AI, dan pembelajaran abad 21 membentuk pendekatan pendidikan yang faktual, relevan, dan adaptif terhadap tantangan global. Penelitian ini menegaskan bahwa AI tidak sekadar teknologi, tetapi sarana yang merealisasikan prinsip realisme dalam praktik pembelajaran modern, sekaligus memberikan implikasi penting bagi pengembangan strategi pembelajaran, kurikulum, dan kebijakan pendidikan di era digital.

References

Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1–11. https://doi.org/10.1016/j.edurev.2016.11.002

Baker, R. S., & Inventado, P. S. (2014). Educational data mining and learning analytics. In J. A. Larusson & B. White (Eds.), Learning analytics: From research to practice (pp. 61–75). Springer. https://doi.org/10.1007/978-1-4614-3305-7_4

Biesta, G. (2015). What is education for? On good education, teacher judgement, and educational professionalism. European Journal of Education, 50(1), 75–87. https://doi.org/10.1111/ejed.12109

Care, E., Griffin, P., & McGaw, B. (2012). Assessment and teaching of 21st century skills: An introduction. In P. Griffin, B. McGaw, & E. Care (Eds.), Assessment and teaching of 21st century skills (pp. 1–33). Springer. https://doi.org/10.1007/978-94-007-2324-5_1

Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510

Darling-Hammond, L., Flook, L., Cook-Harvey, C., Barron, B., & Osher, D. (2020). Implications for educational practice of the science of learning and development. Applied Developmental Science, 24(2), 97–140. https://doi.org/10.1080/10888691.2018.1537791

European Commission. (2020). Ethical guidelines on the use of artificial intelligence (AI) and data in teaching and learning for educators. Publications Office of the European Union. https://op.europa.eu/en/publication-detail/-/publication/d81a0d54-5348-11eb-b59f-01aa75ed71a1

Facer, K., & Selwyn, N. (2021). Digital technology and the futures of education – towards 'non-stupid' optimism. UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000377071

Gutek, G. L. (2014). Philosophical, ideological, and theoretical perspectives on education (2nd ed.). Pearson.

Holmes, W., Anastopoulou, S., Schaumburg, H., & Mavrikis, M. (2018). Technology-enhanced personalised learning: Untangling the evidence. Robert Bosch Stiftung GmbH.

Holstein, K., McLaren, B. M., & Aleven, V. (2019). Co-designing a real-time classroom orchestration tool to support teacher–AI complementarity. Journal of Learning Analytics, 6(2), 27–52. https://doi.org/10.18608/jla.2019.62.3

Jang, H. (2016). Identifying 21st century STEM competencies using workplace data. Journal of Science Education and Technology, 25(2), 284–301. https://doi.org/10.1007/s10956-015-9593-1

Knox, J. (2020). Artificial intelligence and education in China. Learning, Media and Technology, 45(3), 298–311. https://doi.org/10.1080/17439884.2020.1754236

Kulik, J. A., & Fletcher, J. D. (2016). Effectiveness of intelligent tutoring systems: A meta-analytic review. Review of Educational Research, 86(1), 42–78. https://doi.org/10.3102/0034654315581420

Luckin, R., & Cukurova, M. (2019). Designing educational technologies in the age of AI: A learning sciences‐driven approach. British Journal of Educational Technology, 50(6), 2824–2838. https://doi.org/10.1111/bjet.12861

Makransky, G., & Petersen, G. B. (2021). The cognitive affective model of immersive learning (CAMIL): A theoretical research-based model of learning in immersive virtual reality. Educational Psychology Review, 33, 937–958. https://doi.org/10.1007/s10648-020-09586-2

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd ed.). SAGE Publications.

Noddings, N. (2016). Philosophy of education (4th ed.). Westview Press.

OECD. (2019). OECD Future of Education and Skills 2030: OECD Learning Compass 2030. OECD Publishing. https://www.oecd.org/education/2030-project/

Ornstein, A. C., & Hunkins, F. P. (2018). Curriculum: Foundations, principles, and issues (7th ed.). Pearson Education.

Ozmon, H. A., & Craver, S. M. (2014). Philosophical foundations of education (9th ed.). Pearson.

Partnership for 21st Century Skills. (2019). Framework for 21st century learning. http://www.p21.org/our-work/p21-framework

Pedro, F., Subosa, M., Rivas, A., & Valverde, P. (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development (Working Paper on Education Policy). UNESCO.

Popenici, S. A., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(1), Article 22. https://doi.org/10.1186/s41039-017-0062-8

Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147, Article 103778. https://doi.org/10.1016/j.compedu.2019.103778

Roll, I., & Wylie, R. (2016). Evolution and revolution in artificial intelligence in education. International Journal of Artificial Intelligence in Education, 26(2), 582–599. https://doi.org/10.1007/s40593-016-0110-3

Schleicher, A. (2019). Educating learners for their future, not our past. OECD Publishing. https://doi.org/10.1787/9789264308343-en

Selwyn, N. (2019). Should robots replace teachers? AI and the future of education. Polity Press.

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039

Tuomi, I. (2018). The impact of artificial intelligence on learning, teaching, and education (EUR 29442 EN). Publications Office of the European Union. https://doi.org/10.2760/12297

UNESCO. (2015). Rethinking education: Towards a global common good? UNESCO Publishing.

van Laar, E., van Deursen, A. J., van Dijk, J. A., & de Haan, J. (2017). The relation between 21st-century skills and digital skills: A systematic literature review. Computers in Human Behavior, 72, 577–588. https://doi.org/10.1016/j.chb.2017.03.010

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational Psychologist, 46(4), 197–221. https://doi.org/10.1080/00461520.2011.611369

Voogt, J., & Roblin, N. P. (2012). A comparative analysis of international frameworks for 21st century competences: Implications for national curriculum policies. Journal of Curriculum Studies, 44(3), 299–321. https://doi.org/10.1080/00220272.2012.668938

Walkington, C., & Bernacki, M. L. (2019). Appraising research on personalized learning: Definitions, theoretical alignment, advancements, and future directions. Journal of Research on Technology in Education, 52(3), 235–252. https://doi.org/10.1080/15391523.2019.1693906

Williamson, B., & Eynon, R. (2020). Historical threads, missing links, and future directions in AI in education. Learning, Media and Technology, 45(3), 223–235. https://doi.org/10.1080/17439884.2020.1798995

Xie, H., Chu, H. C., Hwang, G. J., & Wang, C. C. (2019). Trends and development in technology-enhanced adaptive/personalized learning: A systematic review of journal publications from 2007 to 2017. Computers & Education, 140, Article 103599. https://doi.org/10.1016/j.compedu.2019.103599

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – Where are the educators? International Journal of Educational Technology in Higher Education, 16(1), Article 39. https://doi.org/10.1186/s41239-019-0171-0

Downloads

Published

2025-12-24

How to Cite

Maya Putriwan, & Ismail. (2025). Perspektif Realisme terhadap Pemanfaatan Artificial Intelligence pada Pembelajaran Abad 21. Edukasiana: Jurnal Inovasi Pendidikan, 4(4), 2387–2397. https://doi.org/10.56916/ejip.v4i4.2683

Issue

Section

Articles