Enhancing the Ability to Recognize Fraction Numbers Through Context-Based Concrete Media in Grade V Slow Learners at a Public Elementary School
DOI:
https://doi.org/10.56916/jirpe.v4i3.1618Keywords:
slow learners, fraction recognition, concrete media, contextual learning, elementary mathematicsAbstract
Fraction concepts represent fundamental yet challenging mathematical domains in elementary education, with difficulties particularly pronounced among slow learners who constitute one-fifth of typical classrooms. Traditional pedagogical approaches emphasizing rote memorization have consistently demonstrated limitations in fostering deep conceptual understanding for students with IQ ranges of 70-89. This study investigates the effectiveness of contextual-based concrete media in enhancing fraction recognition abilities among fifth-grade slow learners through differentiated instructional approaches. Classroom Action Research employing Stringer's Look-Think-Act model was conducted across two cycles with 15 fifth-grade slow learners at State Elementary School 005 Sangkulirang, East Kutai Regency. Mixed methods combined qualitative observations of learning processes with quantitative analysis of formative test results. Data collection utilized observation sheets, pre-post achievement tests covering fraction recognition (½, ¼, ¾), and documentation. Success criteria required 75% of students achieving scores ≥70 (minimum mastery criteria). Progressive improvements occurred across intervention phases, with student mastery rates advancing from 20% baseline to 53.3% (Cycle I) to 100% (Cycle II). Class mean scores increased systematically from 51.3 to 69.3 to 77.3 respectively. Qualitative observations revealed transformation from passive confusion to active mathematical discourse, with enhanced student engagement and confidence in fraction-related tasks. Contextual-based concrete media significantly enhances fraction recognition among slow learners, achieving complete mastery through systematic integration of manipulative materials with authentic problem-solving contexts. The findings provide evidence-based pedagogical strategies for inclusive mathematics instruction that accommodates diverse cognitive profiles while maintaining academic rigor.
References
Amelia, D., Firnanda, Z. I., & Pangestu, W. T. (2025). Pengaruh Media Konkret Pecah Pizza terhadap Hasil Belajar Siswa pada Materi Konsep Nilai Pecahan Kelas V SDN Kalisari II/513 Surabaya. Indonesian Research Journal on Education, 5(4), 255-263. https://doi.org/10.31004/irje.v5i4.2908
Booth, J. L., & Koedinger, K. R. (2012). Are diagrams always helpful tools? Developmental and individual differences in the effect of presentation format on student problem solving. British Journal of Educational Psychology, 82(3), 492–511. https://doi.org/10.1111/j.2044-8279.2011.02041.x
Booth, J. L., Newton, K. J., & Twiss-Garrity, L. K. (2014). The impact of fraction magnitude knowledge on algebra performance and learning. Journal of Experimental Child Psychology, 118, 110–118. https://doi.org/10.1016/j.jecp.2013.09.001
Chan, J. W. Y., & Chan, W. W. L. (2023). Examining the learning effects of concrete and abstract materials among university students using a two‐dimensional approach. British Journal of Educational Psychology, 93(4), 1053-1071. https://doi.org/10.1111/bjep.12619
De Bock, D., Deprez, J., Dooren, W. V., Roelens, M., & Verschaffel, L. (2011). Abstract or concrete examples in learning mathematics? A replication and elaboration of Kaminski, Sloutsky, and Heckler's study. Journal for Research in Mathematics Education, 42(2), 109–126. https://doi.org/10.5951/jresematheduc.42.2.0109
Driscoll, M. P. (2005). Psychology of learning for instruction (3rd ed.). Allyn and Bacon.
Distira, A. S., & Faruq, D. J. (2025). Pemanfaatan Media Papan Pecahan Putar dalam Meningkatkan Pemahaman Konsep Pecahan Siswa Sekolah Dasar. JagoMIPA: Jurnal Pendidikan Matematika dan IPA, 5(2), 632-640. https://doi.org/10.53299/jagomipa.v5i2.1699
Fyfe, E. R., McNeil, N. M., Son, J. Y., & Goldstone, R. L. (2014). Concreteness fading in mathematics and science instruction: A systematic review. Educational psychology review, 26(1), 9-25. https://doi.org/10.1007/s10648-014-9249-3
Geary, D. C., Hoard, M. K., Nugent, L., & Byrd-Craven, J. (2008). Development of number line representation in children with mathematical learning disability. Developmental Neuropsychology, 33(3), 277–299. https://doi.org/10.80/ 8756564080192361
Golafshani, N. (2013). Teachers' beliefs and teaching mathematics with manipulatives. Canadian Journal for Education, 36(3), 137–159. link.gale.com/apps/doc/A378681816/AONE?u=anon~8072806b&sid=googleScholar&xid=516808e2.
Hamdan, N., & Gunderson, E. A. (2017). The number line is a critical spatial-numerical representation: Evidence from a fraction intervention. Developmental Psychology, 53(3), 587–596. https://doi.org/10.1037/dev0000252
Hardiningtyas, B. T., Handayani, A. D., & Mujiono, M. (2025). Meningkatkan Hasil Belajar Matematika Materi Pecahan Dengan Media Benda Kongkrit. MANAJERIAL: Jurnal Inovasi Manajemen dan Supervisi Pendidikan, 5(1), 83-89. https://doi.org/10.51878/manajerial.v5i1.4901
Kaminski, J. A., Sloutsky, V. M., & Heckler, A. F. (2008). The advantage of abstract examples in learning math. Science, 320(5875), 454-455. https://doi.org/10.1126/science.1154659
Karsenty, R. (2010). Nonprofessional mathematics tutoring for low-achieving students in secondary schools: A case study. Educational Studies in Mathematics, 74(1), 1-21. https://doi.org/10.1007/s10649-009-9223-z
Kaznowski, K. (2004). Slow learners: Are educators leaving them behind?. NASSP Bulletin, 88(641), 31-45. https://doi.org/10.1177/019263650408864103
Laski, E. V., Jor’dan, J. R., Daoust, C., & Murray, A. K. (2015). What makes mathematics manipulatives effective? Lessons from cognitive science and Montessori education. Sage Open, 5(2), 2158244015589588. https://doi.org/10.1177/2158244015589588
Liggett, R. S. (2017). The impact of use of manipulatives on the math scores of grade 2 students. Journal of Educational Research and Practice, 26(2), 87– 101. https://eric.ed.gov/?id=EJ1160704
Lortie-Forgues, H., Tian, J., & Siegler, R. (2015). Why is learning fraction and decimal arithmetic so difficult? Developmental Review, 38, 201–221. https://doi.org/10.1016/j.dr.2015.07.008
Maseke, S. U., Ilham, A., Rivai, S., Sarlin, M., & Marshanawiah, A. (2023). Meningkatkan Kemampuan Mengenal Pecahan Biasa Menggunakan Media Kartu Pecahan Pada Siswa Kelas Ii Sdn 25 Kota Selatan. Student Journal of Elementary Education, 2(2), 94-110. https://ejournal-fip-ung.ac.id/ojs/index.php/SJEE/article/view/2632
McNeil, N. M., Uttal, D. H., Jarvin, L., & Sternberg, R. J. (2009). Should you show me the money? Concrete objects both hurt and help performance on mathematics problems. Learning and instruction, 19(2), 171-184. https://doi.org/10.1007/s10648-014-9249-3
Mundia, L. (2012). The Assessment of Math Learning Difficulties in a Primary Grade-4 Child with High Support Needs: Mixed Methods Approach. International Electronic Journal of Elementary Education, 4(2), 347-366. https://eric.ed.gov/?id=EJ1070446
Piaget, J. (1978). Piaget's theory of intelligence (Vol. 2). Englewood Cliffs, NJ: Prentice Hall.
Pound, L., & Lee, T. (2021). Teaching Mathematics Creatively. Oxon: Routledge. https://doi.org/10.4324/9781003055396
Sari, S. R. A. P., Nurhastuti, N., & Fitriani, F. (2024). Meningkatkan kemampuan mengenal pecahan pada anak tunagrahita melalui metode Guided Discovery. Literal: Disability Studies Journal, 2(01), 9-15. https://doi.org/10.62385/literal.v2i01.101
Sari, V. M. (2014). Efektifitas Penggunaan Media Puzzle dalam Meningkatkan Kemampuan Mengenal Konsep Bilangan Pecahan Sederhana Bagi Anak Kesulitan Belajar. E-JUPEKhu, 3(1). https://doi.org/10.24036/jupe30610.64
Shoimah, R. N., Syafi'aturrosyidah, M., & Hadya, S. (2021). Penggunaan media pembelajaran konkrit untuk meningkatkan aktifitas belajar dan pemahaman konsep pecahan mata pelajaran Matematika siswa kelas III MI Ma’arif Nu Sukodadi-Lamongan. MIDA: Jurnal Pendidikan Dasar Islam, 4(2), 1-18. https://e-jurnal.unisda.ac.id/index.php/mida/article/view/4055
Siegler, R. S., Fazio, L. K., Bailey, D. H., & Zhou, X. (2013). Fractions: The new frontier for theories of numerical development. Trends in Cognitive Sciences, 17(1), 13–19. https://doi.org/10.1016/j.tics.2012.11.004
Siegler, R. S., & Lortie-Forgues, H. (2017). Hard lessons: Why rational number arithmetic is so difficult for so many people. Current Directions in Psychological Science, 26, 346–351. https://doi.org/10.1177/0963721417700129
Skemp, R. (1989). Mathematics in the Primary School. London: Routledge. https://doi.org/10.4324/9780203403891
Sugiyanti, E., Vernanda, G., & Nopprima, A. L. (2022). Penerapan Model Pembelajaran Contextual Teaching And Learning (CTL) Untuk Meningkatkan Kemampuan Mengenal Pecahan Sederhana Pada Siswa Tunarungu. Special Need Education Journal, 2(2), 036-043. https://doi.org/10.36269/sj.v1i2.679
Tran, T., Nguyen, T. T. T., Le, T. T. T., & Phan, T. A. (2020). Slow learners in mathematics classes: the experience of Vietnamese primary education. Education 3-13, 48(5), 580-596. https://doi.org/10.1080/03004279.2019.1633375
Trninic, D., Kapur, M., & Sinha, T. (2020). The disappearing “advantage of abstract examples in learning math”. Cognitive Science, 44(7), e12851. https://doi.org/10.1111/cogs.12851
Ullifah, D. (2021). Mengembangkan Pembelajaran Matematika Menggunakan Media Kongkrit Untuk Siswa Kelas 1 SD Dalam Materi Nilai Tempat Puluhan dan Satuan. JURNAL KOULUTUS, 4(1), 42-51. https://doi.org/10.51158/koulutus.v4i1.535
Van den Heuvel-Panhuizen, M., & Drijvers, P. (2020). Realistic mathematics education. In Encyclopedia of mathematics education (pp. 713-717). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-15789-0_170
Wong, N. Y. (2007). Hong Kong teachers’ views of effective mathematics teaching and learning. ZDM, 39(4), 301-314. https://doi.org/10.1007/s11858-007-0033-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Asril, Edi Purwanta

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.







